Observation of Q-switching and mode-locking in two- section InAs-InP (100) quantum dot lasers at 1.53 μm

نویسندگان

  • Martijn J.R. Heck
  • Erwin A.J.M. Bente
  • Barry Smalbrugge
  • Yok-Siang Oei
  • Meint K. Smit
  • Sanguan Anantathanasarn
  • Richard Nötzel
چکیده

First observation of passive mode-locking in two-section quantum-dot lasers operating at wavelengths around 1.55 μm is reported. Pulse generation at 4.6 GHz from a 9 mm long device is verified by background-free autocorrelation, RF-spectra and real-time oscilloscope traces. The output pulses are stretched in time and heavily up-chirped with a value of 20 ps/nm, contrary to what is normally observed in passively mode-locked semiconductor lasers. The complete output spectrum is shown to be coherent over 10 nm. From a 7 mm long device Q-switching is observed over a large operating regime. The lasers have been realized using a fabrication technology that is compatible with further photonic integration. This makes the laser a promising candidate for e.g. a mode-comb generator in a complex photonic chip. ©2007 Optical Society of America OCIS codes: (130.0250) Optoelectronics; (140.3540) Lasers, Q-switched; (140.4050) Modelocked lasers; (140.5960) Semiconductor lasers; (250.5590) Quantum-well, -wire and -dot devices References and links 1. R. Kaiser, B. Hüttl, H. Heidrich, S. Fidorra, W. Rehbein, H. Stolpe, R. Stenzel, W. Ebert, and G. Sahin, “Tunable monolithic mode-locked lasers on InP with low timing jitter,” IEEE Photon. Technol. Lett. 15, 634–636 (2003). 2. R. Kaiser and B. Hüttl, “Monolithic 40-GHz mode-locked MQW DBR lasers for high-speed optical communication systems,” IEEE J. Sel. Top. Quantum Electron. 13, 125-135 (2007). 3. K.A. Williams, M.G. Thompson and I.H. White, “Long-wavelength monolithic mode-locked diode lasers,” New J. Phys. 6, 179 (2004). 4. C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88, 241105 (2006). 5. M.G. Thompson, A. Rae, R.L. Sellin, C. Marinelli, R.V. Penty, I.H. White, A.R. Kovsh, S.S. Mikhrin, D.A. Livshits and I.L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006). 6. Y. Barbarin, S. Anantathanasarn, E.A.J.M. Bente, Y.S. Oei, M.K. Smit and R. Nötzel, “1.55-μm range InAs-InP (100) quantum-dot Fabry-Pérot and ring lasers using narrow deeply etched ridge waveguides,” IEEE Photon. Technol. Lett. 18, 2644-2646 (2006). 7. E.U. Rafailov, M.A. Cataluna, W. Sibbett, N.D. Il’inskaya, Y.M. Zadiranov, A.E. Zhukov, V.M. Ustinov, D.A. Livshits, A.R. Kovsh and N.N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005). 8. E.U. Rafailov, P. Loza-Alvarez, W. Sibbett, G.S. Sokolovskii, D.A. Livshits, A.E. Zhukov and V.M. Ustinov, “Amplification of femtosecond pulses by over 18 dB in a quantum-dot semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 15, 1023-1025 (2003). 9. S. Anantathanasarn, R. Nötzel, P.J. van Veldhoven, F.W.M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E.J. Geluk, T.J. Eijkemans, E.A.J.M. Bente, Y.S. Oei, M.K. Smit and J.H. Wolter, “Lasing of wavelength-tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89, 073115 (2006). #87026 $15.00 USD Received 29 Aug 2007; revised 22 Oct 2007; accepted 22 Oct 2007; published 26 Nov 2007 (C) 2007 OSA 10 December 2007 / Vol. 15, No. 25 / OPTICS EXPRESS 16292 10. J.J.M. Binsma, M. van Geemert, F. Heinrichsdorff, T. van Dongen, R.G. Broeke and M.K. Smit, “MOVPE waveguide regrowth in InGaAsP/InP with extremely low butt joint loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2001), pp. 245-248. 11. Y. Barbarin, E.A.J.M. Bente, T. de Vries, J.H. den Besten, P.J. van Veldhoven, M.J.H. Sander-Jochem, E. Smalbrugge, F.W.M. van Otten, E.J. Geluk, M.J.R. Heck. X.J.M. Leijtens, J.G.M. van der Tol, F. Karouta, Y.S. Oei, R. Nötzel and M.K. Smit, “Butt-joint interfaces in InP/InGaASP waveguides with very low reflectivity and low loss,” in Proc. Symp. IEEE/LEOS Benelux Chapter (2005), pp. 89–92. 12. Y. Barbarin, E.A.J.M. Bente, M.J.R. Heck, Y.S. Oei, R. Nötzel and M.K. Smit, “Characterization of a 15 GHz integrated bulk InGaAsP passively modelocked ring laser at 1.53μm,” Opt. Express 14, 9716-9727 (2006). 13. E.A. Viktorov, P. Mandel, A.G. Vladimirov and U. Bandelow, “Model for mode locking in quantum dot lasers,” Appl. Phys. Lett. 88, 201102 (2006). 14. E.A. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A.G. Vladimirov and M. Wolfram, “Stability of the modelocking regime in quantum dot laser,” in Conference on Lasers and Electro-Optics Europe, CLEO (2007), paper IG6. 15. U. Bandelow, M. Radziunas, A. Vladimirov, B. Hüttl and R. Kaiser, “40 GHz mode-locked semiconductor lasers: theory, simulations and experiment,” Opt. Quantum Electron. 38, 495-512 (2006).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers.

We present an investigation of passive and hybrid mode-locking in Fabry-Pérot type two-section InAs/InP(100) quantum dot lasers that show dual wavelength operation. Over the whole current and voltage range for mode-locking of these lasers, the optical output spectra show two distinct lobes. The two lobes provide a coherent bandwidth and are verified to lead to two synchronized optical pulses. T...

متن کامل

Dual Wavelength Passive and Hybrid Mode-Locking of a 10GHz Quantum Dot Laser Diode at 1.5μm

We report on stable dual-wavelength operation in passive and hybrid mode-locking of a 10GHz two-section InAs/InP(100) quantum dot laser diode operating at 1.5μm. The range of stable passive mode-locking, the locking range of hybrid mode-locking and detailed measurements of the phase modulation in the output pulses will be presented. Keywordsmode-locked laser diode; quantum dot; hybrid mode-lock...

متن کامل

Single-layer InAs/InP (100) quantum-dots on well laser and mid-infrared emission

We report a single layer InAs/InP (100) quantum dot (QD) laser operating in continuous wave mode at room temperature on the QD ground state transition grown by metal organic vapor phase epitaxy. The necessary high QD density is achieved by growing the QDs on a thin InAs quantum well (QW). This QDs on QW laser exhibits a high slope efficiency and a lasing wavelength of 1.74 μm. An extremely long...

متن کامل

InAs/InP(100) quantum dot laser with high wavelength stability

Introduction: The lasing wavelength of a semiconductor laser inevitably changes with varying the operation temperature, which is, however, not desirable for applications requiring specific and stable light wavelength. Thus, laser diodes with wavelength insensitive to temperature are fascinating and can drastically ease the critical requirements on precise temperature control. The quantum dot (Q...

متن کامل

Passively Mode-Locked 4.6 and 10.5 GHz Quantum Dot Laser Diodes Around 1.55μm With Large Operating Regime

Passive mode-locking in two-section InAs/InP quantum dot laser diodes operating at wavelengths around 1.55 μm is reported. For a 4.6-GHz laser, a large operating regime of stable mode-locking, with RF-peak heights of over 40 dB, is found for injection currents of 750 mA up to 1.0 A and for values of the absorber bias voltage of 0 V down to −3 V. Optical output spectra are broad, with a bandwidt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017